Novel Microstrip Antenna Design

نویسندگان

  • A. Hameed
  • A. Oudah
  • Izzeldin I. Mohd
چکیده

A simple, small, compact, low cost, and practical antenna for 2.4 GHz applications is proposed in this paper. A detailed investigation on miniaturized microstrip planar antenna design using a combination of proposed shorted patch and meandering method are presented. All design and simulations are done using Computer Simulation Studio (CST) software. For accuracy reasons, verification has been done, all the designs were fabricated, and measurements on return loss and impedance bandwidth were implemented by using RF Analyzer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Miniaturization of a Novel Fractal Microstrip Antenna for UWB Applications

A novel printed octagonal fractal microstrip antenna with semi-elliptical ground plane is presented for ultra wide band applications. The proposed antenna has a compact size of 20×20×1 mm³. The measured result of the antenna exhibits the ultra wide band characteristics from 2/9 to 14/2 GHz. In this paper, reducing antenna’s size by 35%, the same results were achieved, while small dimension frac...

متن کامل

A Capacitive Fed Microstrip Patch Antenna with Air Gap for Wideband Applications (RESEARCH NOTE)

In this paper a microstrip antenna on a suspended substrate with capacitive feed is presented. capacitive feed is created by a slot within the rectangular patch around the feed point. The proposed antenna exhibits a much higher impedance bandwidth of about 47% (S11 < −10 dB). Effects of key design parameters such as the air gap between the substrate and the ground plane, the gap width between r...

متن کامل

Superconducting Microstrip-Fed Antenna Coupled to a Microwave Kinetic Inductance Detector

A proper antenna to couple to a microstrip Microwave Kinetic Inductance Detector (MKID) is designed and simulated. A twin-slot microstrip-fed inline antenna is designed for frequency band of 600-720~GHz integrated with an elliptical lens and coupled to the MKID. A systematic design procedure for design of such antenna with microstrip inline feeding is presented. Whole structure of lens and twin...

متن کامل

Design Investigation of Microstrip Patch and Half-Mode Substrate Integrated Waveguide Cavity Hybrid Antenna Arrays

In this paper two linear arrays including a linear 1×4 and a planar 2×2 of microstrip patch and half-mode substrate integrated waveguide (SIW) cavity hybrid antenna are introduced and investigated. These are simply implemented using low cost single layer printed circuit board (PCB) process. The array element consists of a rectangular microstrip patch with appropriate dimensions in the vicinity ...

متن کامل

Broadband Stacked Microstrip Patch Antenna for L-Band Operation: FDTD Modeling

This paper presents a novel implementation of an electromagnetically coupled patch antenna using air gap filled substrates to achieve the maximum bandwidth. We also propose an efficient modeling technique using the FDTD method which can substantially reduce the simulation cost for modeling the structure. The simulated results have been compared with measurement to show the broadband behavio...

متن کامل

Development of A Compact and Low Profile ‎Cavity Backed Slot Antenna Using Microstrip ‎Gap Waveguide Technology

Proof of concept of a cavity backed slot antenna based on inverted microstrip gap ‎waveguide (IMGW) technology is presented. Since the antenna is operating based on the ‎first resonating mode of the cavity, it is more compact compared to the ordinary cavity ‎backed slot antennas in which the second cavity mode is used for radiation. Furthermore, ‎the proposed antenna element introduces lower lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014